

Le sujet comporte 4 pages numérotées de $1 / 4$ à $4 / 4$. La page $4 / 4$ est à rendre avec la copie.

Exercice 1: (5 points)

Dans l'espace rapporté à un repère orthonormé direct $(\mathrm{O}, \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$, on considère la sphère (S) d'équation $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{x}+2 \mathrm{y}-23=0$.
$1 /$ Justifier que (S) est de centre le point $\mathrm{I}(1,-1,0)$ et de rayon 5.
2/ Soit le point $J(-1,1,1)$ et soit (P) l'ensemble des points $M(x, y, z)$ tels que $\overrightarrow{\mathrm{J}} \cdot \overrightarrow{\mathrm{JM}}=0$.
a) Justifier que (P) est le plan d'équation $2 x-2 y-z+5=0$.
b) Montrer que l'intersection de (S) et (P) est le cercle (C) de centre J et de rayon 4.

3 / Soit le point $\mathrm{A}(-5,5,3)$ et $\left(\mathrm{S}^{\prime}\right)$ la sphère de centre A et de rayon $2 \sqrt{13}$.
a) Montrer que A appartient à la droite (IJ).
b) Montrer que $\mathrm{AJ}=6$.

4/ Soit M un point du cercle (C).
a) Justifier que le triangle AJM est rectangle en J .
b) En déduire que $\mathrm{AM}=2 \sqrt{13}$.
c) Déterminer alors l'intersection de la sphère (S^{\prime}) et du plan (P).

Exercice 2: (5 points)

On considère dans \mathbb{C} l'équation (E): $z^{2}-4 e^{i \frac{\pi}{3}} z+e^{2 \frac{\pi}{3}}=0$.
1/a) Montrer que le discriminant Δ de l'équation (E) est égal à $\left(2 \sqrt{3} \mathrm{e}^{\mathrm{i} \frac{\pi}{3}}\right)^{2}$.
b) Résoudre l'équation (E).On donnera les solutions sous forme exponentielle.

2/ Dans l'annexe ci-jointe, ($\mathrm{O}, \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$) est un repère orthonormé direct du plan et \mathscr{C} est le cercle de centre le point I d'affixe $z_{1}=1+i \sqrt{3}$ et de rayon $\sqrt{3}$.
a) Écrire z_{I} sous forme exponentielle.
b) La droite (OI) coupe le cercle \mathscr{C} en deux points A et B tels que $\mathrm{OA}<\mathrm{OB}$.

Placer A et B , puis justifier que $\mathrm{OA}=2-\sqrt{3}$ et $\mathrm{OB}=2+\sqrt{3}$.
c) En déduire que les affixes respectives z_{A} et z_{B} des points A et B sont les solutions de l'équation (E).

Exercice 3 : (6 points)

$1 /$ Soit la fonction g définie sur $] 0,+\infty[$ par $g(x)=x-\ln x$.
a) Etudier le sens de variation de g.
b) En déduire que pour tout réel x de $] 0,+\infty[, \mathrm{g}(\mathrm{x})>0$.

2/ Soit la fonction f définie sur $] 0,+\infty\left[\right.$ par $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-(\ln \mathrm{x})^{2}$.
a) Calculer $\lim _{x \rightarrow 0^{+}} f(x)$ et montrer que $\lim _{x \rightarrow+\infty} f(x)=+\infty$..
b) Montrer que f est dérivable sur $] 0,+\infty[$ et que pour tout réel x de $] 0,+\infty\left[, f^{\prime}(x)=\frac{2 g(x)}{x}\right.$.
c) Dresser le tableau de variation de f.
$3 /$ Le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$. On désigne par C_{f} la courbe représentative de f et par Δ la droite d'équation $\mathrm{y}=2 \mathrm{x}$.
a) Vérifier que Δ est la tangente à C_{f} en son point d'abscisse 1 .
b) Montrer que C_{f} admet une direction asymptotique qui est celle de la droite Δ.
c) Étudier la position relative de C_{f} et Δ.

4/ a) Montrer que l'équation $\mathrm{f}(\mathrm{x})=0$ admet une unique solution α et que $\frac{1}{4}<\alpha<\frac{1}{2}$.
b) Tracer la courbe C_{f}.
c) Soit \mathscr{A} l'aire de la partie du plan limitée par la droite Δ, la courbe C_{f} et les droites d'équations $x=1$ et $x=e$.
En utilisant une intégration par parties, montrer que $\mathscr{A}=\mathrm{e}-2$.

Exercice 4 : (4 points)

$1 /$ Soit $\left(u_{n}\right)_{n \in \mathbb{N}}$ la suite géométrique de premier terme $u_{0}=\frac{1}{3}$ et de raison $\frac{1}{3}$.
a) Calculer u_{1}.
b) Déterminer $\lim _{n \rightarrow+\infty} u_{n}$.
c) Pour tout entier naturel n, on pose $S_{n}=u_{0}+u_{1}+\ldots . .+u_{n}$.

Montrer que $\mathrm{S}_{\mathrm{n}}=\frac{1}{2}\left(1-\frac{1}{3^{\mathrm{n}+1}}\right)$.
2/ En étudiant les variations de la fonction $h: x \mapsto e^{x}-1-x$, montrer que

$$
1+\mathrm{x} \leq \mathrm{e}^{\mathrm{x}}, \text { pour tout réel } \mathrm{x} .
$$

3/ Soit $\left(v_{n}\right)$ la suite définie, pour tout entier naturel n, par

$$
v_{n}=\left(1+u_{0}\right)\left(1+u_{1}\right) \times \ldots . \times\left(1+u_{n}\right) .
$$

a) Calculer v_{0} et v_{1}.
b) Montrer que la suite $\left(\mathrm{v}_{\mathrm{n}}\right)$ est croissante.
c) Montrer que, pour tout entier naturel $n, v_{n} \leq e^{\frac{1}{2}\left(1-\frac{1}{3^{n+1}}\right)}$.
d) Montrer que la suite (v_{n}) est convergente.
e) Soit $\boldsymbol{\ell}$ la limite $\mathrm{de}\left(\mathrm{v}_{\mathrm{n}}\right)$.

Montrer que $1<\boldsymbol{\ell} \leq \sqrt{\mathrm{e}}$.

Epreuve : MATHEMATIQUES - Section : Sciences expérimentales
Annexe (à rendre avec la copie)

