RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT

Session principale

2024

Épreuve : Mathémat

Section: Mathématiques

Durée: 4h

Coefficient de l'épreuve : 4

Le sujet comporte 6 pages numérotées de 1/6 à 6/6. Les pages 5/6 et 6/6 sont à rendre avec la copie.

Exercice 1 (4.5 points)

On considère dans \mathbb{C} l'équation (E): $2\sqrt{3}z^2 - \left(7 - i\sqrt{3}\right)z + 2\sqrt{3} - 2i = 0$.

- 1) a) Vérifier que $\frac{2}{\sqrt{3}}$ est une solution de (E).
 - b) Déterminer l'autre solution sous forme exponentielle.
- 2) Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Dans **la figure 1** de l'annexe ci-jointe, ζ est le cercle de centre O et de rayon 1 et P est un point de ζ d'affixe $z_P = e^{i\theta}$, où θ est un réel de $]-\pi,\pi[\setminus\{0\}]$.

- a) Construire le point Q d'affixe $z_Q = e^{i(\theta \frac{\pi}{6})}$.
- b) La tangente à ζ en Q coupe la droite (OP) au point M d'affixe $z_{\rm M}$.

$$\text{Montrer que } z_M = \frac{2}{\sqrt{3}} e^{i\theta}.$$

- c) Construire le point N d'affixe $z_N = \frac{2}{\sqrt{3}}$.
- d) Vérifier que les points M et N sont distincts.
- 3) a) Montrer que $z_M z_N = \frac{4}{\sqrt{3}} \sin(\frac{\theta}{2}) e^{i(\frac{\theta}{2} + \frac{\pi}{2})}$.
 - b) Montrer que $z_M z_Q = \frac{1}{\sqrt{3}} e^{i(\theta + \frac{\pi}{3})}$.
 - c) Pour quelle valeur de θ , le triangle MNQ est-il rectangle en M?

Exercice 2 (5 points)

Le plan est orienté dans le sens direct.

Dans la **figure 2** de l'annexe ci-jointe, le triangle ABC est isocèle en A tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{5\pi}{6} [2\pi]$, J est le milieu du segment [AC], I est le point tel que $\overrightarrow{AC} = \sqrt{2} \overrightarrow{AI}$

et K est le point tel que le triangle AJK est isocèle en A et $(\overrightarrow{AJ}, \overrightarrow{AK}) = \frac{5\pi}{6} [2\pi]$.

Soit R la rotation de centre A et d'angle $\frac{5\pi}{6}$, h l'homothétie de centre A et de rapport $\frac{\sqrt{2}}{2}$ et S la similitude directe telle que S(B)=I et S(I)=K.

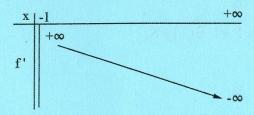
- 1) Justifier que $h \circ R = R \circ h$.
- 2) a) Déterminer h o R(B).
 - b) Vérifier que h(I) = J.
 - c) Montrer que $S = h \circ R$.
 - d) En déduire une mesure de l'angle orienté $(\overrightarrow{IB}, \overrightarrow{IK})$.
- 3) Soit E = S(K).
 - a) Montrer que $(\overrightarrow{KI}, \overrightarrow{KE}) = -\frac{\pi}{6} [2\pi].$
 - b) Déterminer S · S · S(B). En déduire que les droites (AB) et (AE) sont perpendiculaires.
 - c) Construire le point E.
- 4) Soit g la similitude indirecte telle que g(B) = I et g(I) = K. On note Ω le centre de g.
 - a) Déterminer le rapport de g.
 - b) Déterminer $g \circ g(B)$. En déduire que Ω est le symétrique de B par rapport à K.
- 5) Soit F le milieu du segment $[I\Omega]$.
 - a) Montrer que F = g(K).
 - b) Justifier que $(\overrightarrow{KI}, \overrightarrow{KF}) \equiv \frac{\pi}{6} [2\pi]$.
 - c) En déduire que le triangle KEF est équilatéral.

Exercice 3 (7 points)

A/ Soit f la fonction définie sur $]-1,+\infty[$ par $f(x)=x-(x-1)\ln(x+1)$.

On désigne par (C) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Montrer que $\lim_{x \to +\infty} f(x) = -\infty$ et déterminer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
 - b) Montrer que la droite d'équation x = -1 est une asymptote à (C).
- 2) Montrer que pour tout $x \in]-1,+\infty[$, $f'(x) = \frac{2}{x+1} \ln(x+1)$.
- 3) On donne ci-dessous le tableau de variation de la fonction f'.



- a) Montrer que l'équation f'(x) = 0 admet dans l'intervalle $]-1,+\infty[$ une unique solution α telle que $1.3 < \alpha < 1.4$.
- b) En déduire le signe de f'(x).
- c) Dresser le tableau de variation de f. (On précisera f(0) et f(1)).
- 4) Tracer la courbe (C), (on prendra $\alpha = 1.35$).
- 5) a) Montrer que pour tout x > -1, $\int_0^x (t-1) \ln(t+1) dt = \frac{1}{2} (x^2 2x 3) \ln(x+1) + \frac{1}{4} (6x x^2)$.
 - b) Calculer l'aire \mathcal{A} de la partie du plan limitée par la courbe (C) et les droites d'équations x = 0, x = 1 et y = 0.
- B/ Pour tout entier $n \ge 2$, on pose $a_n = \int_0^1 (f(x))^n dx$.
- 1) a) Justifier que pour tout $x \in]-1,1], f'(x) \ge 1-\ln 2$.
 - b) En déduire que pour tout entier $n \ge 2$, $f(1-\frac{1}{\sqrt{n}}) \le 1 \frac{1-\ln 2}{\sqrt{n}}$.
- $2)\quad a)\quad \text{Montrer que pour tout entier}\quad n\,\geq\,2\;,\quad \int_0^{1-\frac{1}{\sqrt{n}}} \left(f(x)\right)^n\,dx\,\leq \left(1\,-\,\frac{1-In\,2}{\sqrt{n}}\right)^n.$
 - b) Montrer que pour tout entier $n \ge 2$, $0 \le a_n \le \left(1 \frac{1 \ln 2}{\sqrt{n}}\right)^n + \frac{1}{\sqrt{n}}$.
 - c) Montrer que $\lim_{n\to+\infty} n \ln \left(1 \frac{1-\ln 2}{\sqrt{n}}\right) = -\infty$.
 - d) Déterminer $\lim_{n\to +\infty} a_n$.

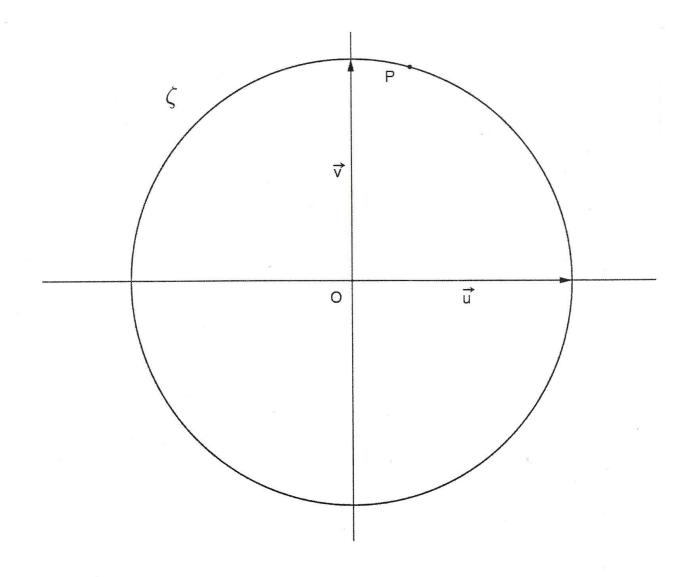
Exercice 4 (3.5 points)

- 1) Soit dans \mathbb{Z}^2 l'équation (E) : 5u 53v = 24.
 - a) Vérifier que (26,2) est une solution de (E).
 - b) Résoudre dans \mathbb{Z}^2 l'équation (E).
- 2) Soit $x \in \mathbb{Z}$.
 - a) Déterminer les restes modulo 5 de $x^2 x$.
 - b) Montrer que $(x-27)^2 \equiv x^2 x 13 \pmod{53}$.
- 3) On considère dans \mathbb{Z} le système (S): $\begin{cases} x^2 x \equiv 1 \pmod{5} \\ x^2 x \equiv 13 \pmod{53}. \end{cases}$
 - a) Montrer que x est une solution de S si et seulement si, il existe $u,v \in \mathbb{Z}^2$ tels que $\begin{cases} x = 3 + 5u \\ x = 27 + 53v. \end{cases}$
 - b) Déterminer les solutions du système (S).
- 4) Déterminer dans \mathbb{Z} , les solutions de l'équation $x^2 x 66 \equiv 0 \pmod{265}$.

Sect	ion:Série:	Signatures des surveillants
Norr	et Prénom:	
Date	et lieu de naissance :	
×		

Épreuve: Mathématiques - Section : Mathématiques Session principale (2024) Annexe à rendre avec la copie

Figure 1



Ne rien écrire ici

Figure 2

