Corrigé de l'exercice 1

I) De quoi s'agit-il?

Rotation - Composé de rotations - Symétrie centrale et symétrie glissante

II) Indications et commentaires

1°)a) Détermination de $R_2 \circ R_1(A)$, $R_3 \circ R_2(B)$ et $R_4 \circ R_3(C)$

Vérifier que : $R_1(A)=B$, $R_2(B)=C$

 $R_2(B)=C, R_3(C)=D$

 $R_3(C)=D, R_4(D)=A$

(utiliser les propriétés d'un triangle rectangle isocèle direct).

• b) Montrons que $R_2 \circ R_1 = R_3 \circ R_2 = R_4 \circ R_3 = f$

Se rappeler que la composée de deux rotations est un déplacement d'angle la somme des angles.

• En déduire que $R_2 \circ R_1$, $R_3 \circ R_2$, $R_4 \circ R_3$ sont des déplacements d'angle Π c'est à dire des symétries centrales de centres respectifs : A*C; B*D et C*A.

Conclure que : $f = S_{\omega}$.

2)a) Montrons que $R_3(R_2(O_1))=R_2(O_1)$ et déterminons $f(O_1)$

Utiliser l'égalité $R_3 \circ R_2 = R_2 \circ R_1$ pour écrire que :

 $f(O_1) = R_3(R_2(O_1)) = R_2(O_1)$. Puisque O_1 est le centre de R_1 .

Retenir de ces égalités que $R_2(O_1)$ est invariant par R_3 .

En déduire que $R_2(O_1) = O_3$ puis $f(O_1) = O_3$.

b) Montrons que $f(O_2) = O_4$.

Suivre la même démarche qu'en 2°)a)

Utiliser l'égalité $R_4 \circ R_3 = R_3 \circ R_2$ puis écrire que : $f(O_2) = R_4(R_3(O_2)) = \dots$

c) Nature du quadrilatère O₁O₂O₃O₄

On a $S_{\omega}(O_1)=O_3$ et $S_{\omega}(O_2)=O_4$ en déduire que $O_1O_2O_3O_4$ est un parallélogramme.

On a de plus : $R_2(O_1) = O_3$. Interpréter cette égalité

Conclure que O₁O₂O₃O₄ est un carré.

3)a) Détermination de g(A) et $g(O_1)$

Montrer que : g(A) = C et $g(O_1) = O_3$.

b) Montrons que g n'est pas une symétrie axiale

On peut raisonner par l'absurde

- Supposer que g est une symétrie axiale
- En déduire que son axe est la médiatrice de [AC] et la médiatrice de [O₁O₃].

Est ce possible ? Conclure.

Nature de g :

Prouver que g est un antidéplacement

g n'étant pas une symétrie axiale, c'est une symétrie glissante.

c) Construction de w'=g(w):

Construire $\omega_1 = s_{\Delta}(\omega)$ puis $\omega' = R_2(\omega_1)$.

Eléments caractéristiques de g :

Utilisez que g(A) = C pour déduire que ω appartient à l'axe de g

 $\omega \text{ appartient à l'axe de g donc } \omega \text{'=g}(\omega) \text{ appartient à cet axe}$ En déduire que : (\omega \omega') est l'axe de g et \omega \omega' son vecteur.